S. Nowicki, D. Felikson and I. Nias, 2023. A changing Antarctica: how computer models help scientists look into the future. Frontiers for Young Mind. 11:1114876. https://doi.org/10.3389/frym.2023.1114876
D. Felikson, S. Nowicki, I. Nias, B. Csatho, A. Schenk, M. Criteau and B. Loomis, 2023. Choice of observation type affects Bayesian calibration of ice sheet model projections. The Cryosphere, 17, 4662-4673, https://doi.org/10.5194/tc-17-4661-2023
I. Otosaka, M. Horwath, R. Mottram, and S. Nowicki, 2023. Monitoring Greenland and Antarctica’s Mass Balance from Space. Surveys of Geophysics, https://doi.org/10.1007/s10712-023-09795-8
R. Kopp, M. Oppenheimer, J.L. O’Reilly, S.S. Drijfhout, T.L. Edwards, B. Fox-Kemper, G.G. Gerner, N.R. Golledge, T.H.J. Hermans, H.T. Hewitt, B.P. Horton, G. Krinner, D. Notz, S. Nowicki. M. Palmer, A.B.A. Slangen, and C. Xia, 2023. Communicating future sea level rise uncertainty and ambiguity to assessment users. Nature Climate Change, 13, 648-660, https://doi.org/10.1038/s41558-023-01691-8
J. Roffman, N. Gomez, M. Yousefi, H.K. Han, and S. Nowicki, 2023. Spatial and Temporal variability in twenty-first century sea-level changes. Geophysical Journal International, 235, 342-352, https://doi.org/10.1093/gji/ggad170
I. Nias, S. Nowicki, D. Felikson and B. Loomis, 2023. Modelling the Greenland Ice Sheet’s committed contribution to sea level during the 21st Century. Journal of Geophysical Research - Earth Surface, 128, e2022JF006914. https://doi.org/10.1029/2022JF006914
B. Fox-Kemper, H.T. Hewitt, C. Xiao, G. Aðalgeirsdóttir, S.S. Drijfhout, T.L. Edwards, N.R. Golledge, M. Hemer, R.E. Kopp, G. Krinner, A. Mix, D. Notz, S. Nowicki, I.S. Nurhati, L. Ruiz, J-B. Sallée, A.B.A. Slangen, Y. Yu, 2021, Ocean, Cryosphere and Sea Level Change. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. Cambridge, United Kingdom and New York, NY, USA, 1211-1362, https://doi.org/10.1017/9781009157896.011
T. Edwards, S. Nowicki and 82 others, 2021: Projected land ice contributions to twenty-first century sea level rise, Nature, 593, 74-82, doi:10.1038/s41586-021-03302-y
A. Payne, S. Nowicki and 62 others, 2021: Future sea level change under CMIP5 and CMIP6 scenarios from the Greenland and Antarctic ice sheets, Geophys. Res. Let., e2020GL091741, https://doi.org/10.1029/2020GL091741
W.H. Lipscomb, G. Leguy, N. Jourdain, X. Asay-Davis, H. Seroussi, and S. Nowicki, 2021: ISMIP6-based projections of ocean-forced Antarctic Ice Sheet evolution using the Community Ice Sheet Model, The Cryosphere, 15, 633–661, https://doi.org/10.5194/tc-15-633-2021.
E. Larour, L. Caron, M. Morlighem, S. Adhikari, T. Frederikse, N.-J. Schlegel, E. Ivins, B. Hamlington, R. Kopp, and S. Nowicki, 2020. ISSM-SLPS: geodetically compliant Sea-Level Projection System for the Ice-sheet and Sea-level System Model v4.17, Geosci. Model Dev., 13, 4925–4941, https://doi.org/10.5194/gmd-13-4925-2020
J.P. Briner, J.K. Cuzzone, J.A. Badgeley, N. Young, E. Steig, M. Morlinghem, N. Schlegel, G. Hakim, J. Schaefer, J. Johnson, A. Lesnek, E. Thomas, E. Allan, O. Bennike, A. Cluett, B. Csatho, A. de Vernal, J. Downs, E. Larour, and S. Nowicki, 2020. Rate of mass loss from the Greenland Ice Sheet will exceed Holocene values this century. Nature 586, 70–74. https://doi.org/10.1038/s41586-020-2742-6
R. Cullather, L. Andrews, M. Croteau, N. Digirolamo, K. Hall, Y.-K. Lim, B. Loomis, C. Shuman, and S. Nowicki, 2020. Anomalous circulation in July 2019 resulting in mass loss on the Greenland Ice Sheet. Geophysical Research Letters, 47, e2020GL087263. https://doi.org/10.1029/2020GL087263
N. Jourdain, X. Asay-Davis, T. Hattermann, F. Straneo, H. Seroussi, C. Little, and S. Nowicki, 2020. A protocol for calculating basal melt rates in the ISMIP6 Antarctic ice sheet projections, 14, 3111-3134, The Cryosphere, https://doi.org/10.5194/tc-14-3111-2020
H. Seroussi, S. Nowicki, A. Payne, H. Goelzer, W. Lipscomb, A. Abe Ouchi, C. Agosta, T. Albrecht, X. Asay-Davis, A. Barthel, R. Calov, R. Cullather, C. Dumas, R. Gladstone, N. Golledge, J. Gregory, R. Greve, T. Hatterman, M. Hoffman, A. Humbert, P. Huybrechts, N. Jourdain, T. Kleiner, E. Larour, G. Leguy, D. Lowry, C. Little, M. Morlighem, F. Pattyn, T. Pelle, S. Price, A. Quiquet, R. Reese, N. Schlegel, A. Shepherd, E. Simon, R. Smith, F. Straneo, S. Sun, L. Trusel, J. Van Breedam, R. van de Wal, R. Winkelmann, C. Zhao, T. Zhang, and T. Zwinger, 2020. ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century, 14, 3033-3070, The Cryosphere, https://doi.org/10.5194/tc-14-3033-2020 .
H. Goelzer, S. Nowicki, A. Payne, E. Larour, H. Seroussi, W. Lipscomb, J. Gregory, A. Abe-Ouchi, A. Shepherd, E. Simon, C. Agosta, P. Alexander, A. Aschwanden, A. Barthel, R. Calov, C. Chambers, Y. Choi, J. Cuzzone, C. Dumas, T. Edwards, D. Felikson, X. Fettweis, N. Golledge, R. Greve, A. Humbert, P. Huybrechts, S. Le clec'h, V. Lee, G. Leguy, C. Little, D. Lowry, M. Morlighem, I. Nias, A. Quiquet, M. Rückamp, N. Schlegel, D. Slater, R. Smith, F. Straneo, L. Tarasov, R. van de Wal, and M. van den Broeke, 2020. The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6, 14, 3071-3096 The Cryosphere, https://doi.org/10.5194/tc-14-3071-2020 .
S. Nowicki, H. Goelzer, H. Seroussi, A. Payne, W., Lipscomb, A., Abe-Ouchi, C. Agosta, P. Alexander, X. Asay-Davis, A. Barthel, T. Bracegirdle, R. Cullather, D. Felikson, X. Fettweis, J. Gregory, T. Hattermann, N. Jourdain, P. Kuipers Munneke, E. Larour, C. Little, M. Morlighem, I. Nias, A. Shepherd, E. Simon, D. Slater, R. Smith, F. Straneo, L. Trusel, M. van den Broeke, and R. van de Wal, R., 2020. Experimental protocol for sea level projections from ISMIP6 stand-alone ice sheet models, The Cryosphere, 14, 2331–2368, https://doi.org/10.5194/tc-14-2331-2020
S. Nowicki and H. Seroussi, 2018. Projections of future sea level contributions from the Greenland and Antarctic Ice Sheets: Challenges beyond dynamical ice sheet modeling. Oceanography. 31(2), 109-117, https://doi.org/10.5670/oceanog.2018.216
A. Shepherd, E. Ivins, E. Rignot, et al., 2018. Mass Balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 558, 219-222, https://doi.org/10.1038/s41586-018-0179-y
R. Cullather, and S. Nowicki, 2018. Greenland ice sheet surface melt and its relation to daily atmospheric conditions. Journal of Climate, 31(5),1897-1919, https://doi.org/10.1175/jcli-d-17-0447.1
A. Shepherd, and S. Nowicki, 2017. Improvements in ice sheet sea level projections Nature Climate Change, 7, 672-674, https://doi.org/10.1038/nclimate3400
S. Nowicki, A. Payne, E. Larour, H. Seroussi, H. Goelzer, W. Lipscomb, J. Gregory, A. Abe Ouchi, and A. Shepherd, 2016. Ice sheet modeling intercomparison project (ISMIP6) contribution to CMIP6. Geoscientific Model Development, 9, 4521-4545, https://doi.org/10.5194/gmd-9-4521-2016
S. Nowicki, and 31 others, 2013. Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project I: Antarctica. Journal of Geophysical Research- Earth Surface, 118, 1-23, https://doi.org/10.1002/jgrf.20081
S. Nowicki, and 31 others, 2013. Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project II: Greenland. Journal of Geophysical Research- Earth Surface, 118, 1025-1044, https://doi.org/10.1002/jgrf.20076